Regulatory RNAs in archaea: first target identification in Methanoarchaea.
نویسندگان
چکیده
sRNAs (small non-coding RNAs) representing important players in many cellular and regulatory processes have been identified in all three domains of life. In Eukarya and Bacteria, functions have been assigned for many sRNAs, whereas the sRNA populations in Archaea are considerably less well characterized. Recent analyses on a genome-wide scale particularly using high-throughput sequencing techniques demonstrated the presence of high numbers of sRNA candidates in several archaea. However, elucidation of the molecular mechanism of sRNA action, as well as understanding their physiological roles, is in general still challenging, particularly in Archaea, since efficient genetic tools are missing. The identification of cellular targets of identified archaeal sRNAs by experimental approaches or computational prediction programs has begun only recently. At present, targets have been identified for one archaeal sRNA, sRNA162 in Methanosarcina mazei, which interacts with the 5' region of its targets, a cis-encoded and a trans-encoded target, blurring the paradigm of a border between cis- and trans-encoded sRNAs. Besides, the first experimental implications have been obtained in Haloarchaea and Pyrobaculum that archaeal sRNAs also target 3' regions of mRNAs. The present review summarizes our current knowledge on archaeal sRNAs and their biological functions and targets.
منابع مشابه
Small regulatory RNAs in Archaea
Small regulatory RNAs (sRNAs) are universally distributed in all three domains of life, Archaea, Bacteria, and Eukaryotes. In bacteria, sRNAs typically function by binding near the translation start site of their target mRNAs and thereby inhibit or activate translation. In eukaryotes, miRNAs and siRNAs typically bind to the 3'-untranslated region (3'-UTR) of their target mRNAs and influence tra...
متن کاملRapid identification of haloarchaea and methanoarchaea using the matrix assisted laser desorption/ionization time-of-flight mass spectrometry
The aim of this study was to classify certain environmental haloarchaea and methanoarchaea using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to expand the archaeal mass spectral database. A total of 69 archaea were collected including type strains and samples isolated locally from different environments. For extraction of the haloarchaeal tot...
متن کاملUpstream Regulatory Elements, Potential Targets and Expression Patterns of Three Drought Responsive miRNAs in Two Grapevine Cultivars
MicroRNAs (miRNAs), as a group of non-coding small RNAs, play key roles in regulating the growth, development and response of plants to various stresses. In this study, the expression patterns of three drought responsive miRNAs (miR159c, miR160a,b and miR169v) were compared in both drought tolerant (Yaghuti) and drought sensitive (Bidanesefid) grapevine cultivars using qRT-PCR under drought str...
متن کاملSmall RNAs of Haloferax mediterranei: Identification and Potential Involvement in Nitrogen Metabolism
Small RNAs have been studied in detail in domains Bacteria and Eukarya but, in the case of the domain Archaea, the knowledge is scarce and the physiological function of these small RNAs (sRNAs) is still uncertain. To extend the knowledge of sRNAs in the domain Archaea and their possible role in the regulation of the nitrogen assimilation metabolism in haloarchaea, Haloferax mediterranei has bee...
متن کاملIdentification of soybean circular RNAs in response to low nitrogen and phosphorus stress
Soybean, one of the most important sources of edible oil and protein in the world, is exposed to various environmental biotic and abiotic stresses. These stresses can negatively impact the quality and quantity of soybean production. This study aimed to identify genes that express circular RNAs in response to low phosphorus and nitrogen stresses in soybean roots. Soybean seeds were grown under d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2013